

InP DHBT MMIC Power Amplifiers for mm-Wave Applications (IN-POWER)

PhD student: Michele Squartecchia

Supervisors: Tom K. Johansen (DTU) Jean-Yves Dupuy (III-V Lab)

Company partner: III-V Lab (Paris, France)

DTU Electrical Engineering Department of Electrical Engineering

Outline

- Background and Motivation
- Power cell design
 - Procedure
 - Preliminary results
- Ongoing work
- Future Work

Background and Motivation

- Due to the needs for high-speed data transmission, wireless communications are increasingly taking place at E-band (71-76 GHz, 81-86 GHz) and higher millimeter-wave bands
 - Large absolute bandwidth
 - Low atmospheric attenuation
 - Small system size
 - Highly directive antennas
- At mm-waves, the main limitations are imposed by the power amplifier of the transmitter $(P_{Tx} \sim 1/f^2)$
- Geometrical downscaling of devices leads to high operation frequencies, but also to limited breakdown voltages

Background and Motivation

DTU

 Compared with other semiconductors, InP Double Heterojunction Bipolar Transistor (DHBT) technology offers a combination of very high frequency of operation and high voltage signal swing together with the potential for high density of integration

Objective

 Investigation and design of innovative circuit topologies to maximize transmitted power and efficiency, minimizing signal distorsions

- InP DHBTs have a good breakdown voltage, but still limited...
- Series combination of transistors in stacked architecture

- Stacking *n* devices, the overall output voltage swing can be *n* times larger than a single device
- The current swing remains the same
- The optimum load impedance is increased by the same factor *n*

 For efficient power combining and for preventing collector-emitter breakdown, the overall voltage swing is equally distributed, and phase-alignment is required:

$$v_{c,k} = \frac{k \cdot v_{c,k-1}}{k-1}$$

Procedure:

- Load pull simulation for the common-emitter stage $(Z_{opt,1})$
- The input impedance to the second stage should have the same value

- > $1/G_{L,2} = 2 \times \text{Re}\{Z_{opt,1}\}$
- ➢ $B_{L,2}$ and C_2 for phase alignment and Re{ $Y_{in,2}$ } = Re{ $Z_{opt,1}$ }

$$L_{1,2} \longrightarrow \operatorname{Im}\{Y_{in,2}\} = \operatorname{Im}\{Z_{opt,1}\}$$

- It can be shown that the value of $Y_{L,2}$ found in this way coincides with the optimum value that would be found through load-pull simulation performed on the resulting two-stack power cell
- The same procedure can be carried out for the design of the third and fourth stages

Preliminary results:

• InP DHBT single finger devices

 $BV_{CEO}{=}4.9$ V; $f_T/f_{max}{=}330/420$ GHz @ $V_{ce}{=}2.4$ V and $I_c{=}15$ mA

• The non-linear UCSD HBT model is employed for circuit simulations

Collector waveforms at the 1-dB compression point

Preliminary results:

The design of the two- and three-stack power cells are intermediate steps for the design of the four-stack

Electromagnetic simulations

Ongoing work

two-stack 4-finger ballasted transistors

two-stack 4-finger transistors

Michele Squartecchia

Future work

- Further optimization of two-stack power cells
- Implementation of three- and four-stack power cells
- Investigation on efficient topologies for impedance matching
- Parallel combination of multiple power cells (e.g. Wilkinson, baluns...)

Thank you!